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ABSTRACT

This study describes the initial application of radiance bias correction and channel selection in the hourly

updated Rapid Refresh model. For this initial application, data from the Atmospheric Infrared Sounder

(AIRS) are used; this dataset gives atmospheric temperature and water vapor information at higher vertical

resolution and accuracy than previously launched low-spectral resolution satellite systems. In this preliminary

study, data fromAIRS are shown to add skill to short-range weather forecasts over a relatively data-rich area.

Two 1-month retrospective runs were conducted to evaluate the impact of assimilating clear-sky AIRS ra-

diance data on 1–12-h forecasts using a research version of the National Oceanic and Atmospheric Admin-

istration (NOAA) Rapid Refresh (RAP) regional mesoscale model already assimilating conventional and

other radiance [AMSU-A, Microwave Humidity Sounder (MHS), HIRS-4] data. Prior to performing the

assimilation, a channel selection and bias-correction spinup procedure was conducted that was appropriate

for the RAP configuration. RAP forecasts initialized from analyses with and without AIRS data were verified

against radiosonde, surface atmosphere, precipitation, and satellite radiance observations. Results show that

the impact fromAIRS radiance data on short-range forecast skill in the RAP system is small but positive and

statistically significant at the 95% confidence level. The RAP-specific channel selection and bias correction

procedures described in this study were the basis for similar applications to other radiance datasets now

assimilated in version 3 of RAP implemented at NOAA’s National Centers for Environmental Prediction

(NCEP) in August 2016.

1. Introduction

TheAtmospheric Infrared Sounder (AIRS), launched

in May 2002 on the National Aeronautics and Space

Administration (NASA) Earth Observing System (EOS)Corresponding author: Haidao Lin, haidao.lin@noaa.gov
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polar-orbiting Aqua platform, is a 3.7–15.4-mm infrared

spectrometer with 2378 spectral channels and 13.5-km

horizontal resolution at nadir (Aumann et al. 2003). By

measuring radiation in more than 2000 different chan-

nels, AIRS provides atmospheric temperature and wa-

ter vapor information at higher vertical resolution

than previous low-spectral-resolution infrared satellite

sounders.

The purpose of this study is to document the impact of

assimilating AIRS clear-sky radiance data into the

hourly updated National Oceanic and Atmospheric

Administration (NOAA) operational Rapid Refresh

(RAP; Benjamin et al. 2016) model system to assess its

impact on very short-range (3–12h) forecasts and to set

the stage for other radiance data assimilation within

RAP. This study was conducted in preparation for op-

erational assimilation of AIRS radiance data and other

hyperspectral sounder data in the hourly updated op-

erational RAP model system implemented at the Na-

tional Centers for Environmental Prediction (NCEP).

Although the positive impacts of AIRS have been well

documented in global prediction systems and some re-

gional prediction systems, they have not been docu-

mented for more frequently updated systems like RAP

for very short-term forecasts (0–12h). RAP-appropriate

channel selection and bias correction techniques applied

in this study are the basis of similar techniques applied to

other radiance datasets in version 3 of RAP (RAPv3)

that was implemented in August 2016, in which hourly

real-time satellite radiance data have been shown to

have small positive impact with statistical significance

(Lin et al. 2017).

Assimilation of AIRS data into global numerical

weather prediction (NWP) systems has been shown in

many studies to improve model initial conditions, lead-

ing to more accurate forecasts over the last decade.

ECMWF first operationally assimilated AIRS radiances

in September 2003 (McNally et al. 2006). The initial

improvements in forecast skill for global 500-hPa geo-

potential height were small but consistent, with a larger-

magnitude improvement in the Southern Hemisphere.

The Met Office (UKMO; Cameron et al. 2005)

began assimilating AIRS radiances on 26 May 2004.

Verification against observations and analysis fields

showed 0.4%–0.5% improvements in the UKMO NWP

index (http://www.metoffice.gov.uk/research/weather/

numerical-modelling/verification/uk-nwp-index-doc).

Using the NCEP verification system, Le Marshall et al.

(2006) reported that AIRS data had a consistent and

beneficial effect on 500-hPa geopotential height forecast

skill over the Southern Hemisphere, with a decrease in

the 500-hPa height correlation between the forecast and

the verifying analysis to below 0.60 being delayed by

about 6 h when AIRS data were assimilated (their

Fig. 2). A slightly smaller-magnitude improvement in

forecast skill was seen in theNorthernHemisphere. This

was attributed to the dense conventional observation

network over North America, Europe, and Asia, so that

there is less additional information added by AIRS data

than where conventional observations are more sparse.

Preoperational trials with AIRS assimilation at the

Navy Research Laboratory (NRL) (Ruston et al. 2006)

showed that an AIRS assimilation run produced slightly

positive impacts in the Southern Hemisphere 500-hPa

height anomaly correlation when compared to the con-

trol experiment. This positive impact led to the im-

plementation of AIRS assimilation into their global

models. Ota et al. (2013) showed a fairly strong impact

fromAIRS radiances in an ensemble forecast sensitivity

to observations (EFSO) study using a more recent GFS

ensemble data assimilation. Joo et al. (2013) showed

that the impacts per sounding from MetOp-A/Infrared

Atmospheric Sounding Interferometer (IASI) and AIRS

are larger than those of themicrowave sounders using the

adjoint-based sensitivity method within the Met Office

global NWP system. This study is not meant to provide a

comparative impact from different satellite instruments

inRAPbut to demonstrate a successful initial application

of channel selection and bias correction appropriate for

the RAP radiance assimilation.

A small positive impact on short-term (0–72h) fore-

casts has also been seen from AIRS radiance data when

assimilated in regional models (McCarty et al. 2009;

Singh et al. 2012; Lim et al. 2014; Wang et al. 2015).

Using the framework mimicking that of the operational

North American Mesoscale Forecast System (NAM),

McCarty et al. (2009) showed at 48 h a forecast im-

provement in geopotential height at 500hPa, defined as

the time difference in hours at which the forecasts fall

below two points of equal anomaly correction, is 2.3 h.

They also showed improvement of 8% and 7% in eq-

uitable threat and bias scores of precipitation forecasts of

25mm (6h)21. Using a similar framework, Lim et al.

(2014) showed improvement in the temperature and ra-

diance brightness temperature bias when compared with

rawinsondes and satellite observations, respectively,

using the tuned community Gridpoint Statistical In-

terpolation (GSI) assimilation system and the Weather

Research and Forecasting (WRF) Model.

Limited satellite data coverage and effective design

for regional radiance bias corrections (BCs) are key

challenges for assimilating AIRS (and other satellite)

data into limited-area and frequently updated models

(with their associated short data-cutoff time). The non-

uniform data coverage due to the limited extent of the

domain and the limited data swaths from the polar
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satellite orbits result in a highly variable number of

available observations per cycle. The short observation

cutoff time associated with the hourly cycle reduces the

number of observations. The lower model top in RAP

(10hPa) compared to global models such as the NCEP

Global Forecast System (GFS; 0.3-hPamodel top) limits

the channels for which radiance measurements can be

assimilated into the model. These limitations can reduce

the effectiveness of the radiance bias correction method

employed.

We applied channel selection and a bias correction

with spinup over a longer period prior to the assimilation

to address these difficulties. We also considered a best-

case (maximum) observation coverage scenario that

neglects the data latency and cutoff issues described

earlier. As such, the results presented in this paper

represent an upper limit (in terms of maximum data

coverage, subject to other limitations in this study) on

the forecast improvement to be expected. The overall

satellite clear-sky radiance data impact within RAP

using the operational real-time datasets is documented

in Lin et al. (2017).

In this paper, a brief description of the RAP model

system is presented in section 2a, and retrospective ex-

periment configurations are given in section 2b. AIRS

channel selection and bias correction procedures for

RAP are described in section 3. In section 4, results from

the retrospective AIRS radiance assimilation experi-

ments are presented. A summary and our conclusions

are presented in section 5.

2. Experiment design

a. Rapid Refresh model/assimilation system

The RAP mesoscale assimilation and forecast system

was developed by theGlobal SystemsDivision (GSD) of

NOAA’s Earth SystemResearch Laboratory (ESRL) in

collaboration with theNationalWeather Service (NWS)

and has run operationally at NCEP/NWS since 2012.

The RAP configuration as it is used operationally at

NCEP is described in Benjamin et al. (2016, hereafter

B16). In this study, a slightly older version of RAP is

used. We include here details about RAP where these

are germane to this study and when they differ from the

description in B16.

The RAP domain (for RAP versions 1 and 2) used in

this study covers all of NorthAmerica, includingAlaska,

Canada, Puerto Rico, and the adjacent ocean areas (see

Fig. 1, domain valid for RAP versions 1 and 2). It has a

13-km horizontal resolution, with 795 3 567 grid points

and 50 vertical computational layers, as well as a 10-hPa

model top. RAP utilizes the GSI (Wu et al. 2002; Kleist

et al. 2009) procedure for the analysis component and

the Advanced Research version of WRF (WRF-ARW;

Skamarock et al. 2008) for the forecast component. In

addition to conventional data, satellite radiance data

[Advanced Microwave Sounding Unit (AMSU-A),

High-Resolution Infrared Radiation Sounder (HIRS-4),

and Microwave Humidity Sounder (MHS)] are also as-

similated in RAP through the Community Radiative

Transfer Model (CRTM; Han et al. 2006; Weng 2007;

Chen et al. 2008) incorporated within GSI. Only the

variational option within GSI is used in this study; the

hybrid three-dimensional variational data assimiliation

(3DVAR)–EnKF option is not activated. NCEP GFS

model forecast atmospheric fields are introduced twice

daily into RAP through two partial cycles (0300–0800

and 1500–2000 UTC). As described in B16, these partial

cycles are hourly cycles that run alongside the ongoing

main cycle and replace the ongoing cycle’s 1-h forecast

as the atmospheric background fields for the 0900 and

2100 UTC analyses. The surface fields (e.g., snow cover,

soil temperature, and moisture) are continuously cycled

independent of the GFS.

b. Retrospective configuration

To evaluate the impact of AIRS radiance data, two

retrospective runs, a control (CNTL) without AIRS and

an experiment (EXP) with AIRS, were conducted

over a 1-month (1–31 May 2010) period. These CNTL

and EXP runs were started at 0300 UTC on 1 May 2010

when theGFS initial conditions for the atmosphere were

introduced intoRAP through a partial cycle. As with the

full cycles, the EXP partial cycles used all data, including

the AIRS radiance data, and the CNTL used all data but

excluding the AIRS radiance data. To reduce compu-

tational resources, a 3-h cycling configuration was

adopted instead of the hourly cycling used operation-

ally. A 12-h forecast is produced for each 3-h cycle,

yielding a total of 245 forecasts from which the average

impact scores were computed. The complete list of ob-

servations assimilated in the CNTL is given in Table 1.

This includes all available conventional data, as well as

satellite radiance data from the AMSU-A, MHS, and

HIRS-4. This matches the observation assimilation in

RAP version 2 (B16), implemented at NCEP in Feb-

ruary 2014. Inclusion of the other satellite radiance data

and all the conventional observations is important for

assessing the impact of AIRS within the full mix of

observations.

The EXP run included the assimilation of all of

the observations used in the CNTL run plus the AIRS

radiance data. In this study, the conventional data used

in these experiments were derived from the RAP real-

time Binary Universal Form for Representation of
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Meteorological Data (BUFR) files from NCEP. For this

study, we used the satellite radiance BUFR files from

the NCEP Global Data Assimilation System (GDAS),

which had a 6-h cutoff time and included radiances for

the instruments (AMSU-A, MHS, HIRS-4, and AIRS)

used in this study. In these experiments, full-coverage

(i.e., assuming no data latency) AIRS data (only in the

AIRS experiment, not in the control run), as well as

other clear-sky radiance data, were assimilated using a

3-h time window. This full data coverage should

provide a best-case scenario for the potential AIRS

impact. Figure 1 shows the AIRS-observed brightness

temperature from channel 791 (wavelength of 10.88mm)

for each cycle on 10 May 2010. There is good coverage

(without real-time data latency and cutoff issues) over

the RAP domain for the AIRS data at 0600, 0900, 1200,

1800, and 2100 UTC.

A thinning procedure to 60km 3 60 km boxes was

used for all radiance data in this study, as radiance ob-

servation errors are assumed to be spatially un-

correlated. For AIRS data, various interchannel checks

(see section 3a) are used to do the thinning more in-

telligently by focusing on the clearest fields of view. The

assumed observation errors used for all radiance chan-

nels assimilated in this study matched those from

the GDAS.

c. Verification

Forecasts initialized using analyses with and without

assimilation of AIRS clear-sky radiances are verified

FIG. 1. AIRS observedBT (K) from channel 791 plotted onto theRAPdomain for each cycle (3-h cycle) on 10May 2010, starting with (top

left) 0000 UTC, (top center) 0300 UTC, and then through 0600, 0900, 1200, 1500, 1800, and 2100 UTC.
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against various observations to assess the impact from

AIRS data on short-range forecasts. Observations used

for verification included rawinsondes, METAR surface

observations, NCEP Stage IV multisensor precipitation

data (Lin and Mitchell 2005), and satellite observations.

The rawinsonde verification procedure used in this

study follows Benjamin et al. (2004a), Benjamin et al.

(2010), and Moninger et al. (2010). Approximately 8680

rawinsonde profiles (140 stations for each of 62 obser-

vation times) over the RAP domain were used in the

verification. Root-mean-square (RMS) errors and mean

errors (biases) were computed from forecast minus ob-

served (F 2 O) differences for temperature T and rel-

ative humidity (RH) at 3-, 6-, 9-, and 12-h forecast

lengths. We further illustrate the impact of AIRS data

on short-range forecasts by also expressing this differ-

ence as a percentage of the control forecast error. Per-

centage impacts are computed using amethod described

by Benjamin et al. (2004b) that does not consider

observation errors or representativeness issues. This

method yields a more conservative percentage change

estimate than would be obtained by including these

factors. The percentage impact is calculated as

x5
(CNTL2EXP)

CNTL
3 100, (1)

where EXP is the average forecast RMS score (for dif-

ferent atmospheric layers; see below) for the experiment

withAIRS andCNTL is the average forecast RMS score

for the experiment without AIRS data. Using this defi-

nition, forecast improvements (error reduction) for a

given experiment are indicated by a positive percentage

impact. Verification is also conducted for different

atmospheric layers. The 1000–100-hPa vertical domain

used for verification is partitioned into three layers:

1000–800hPa (dominated by the boundary layer and

surface effects), 800–400 hPa (the middle troposphere),

and 400–100hPa (from the upper troposphere to lower

stratosphere, including the tropopause and upper-level

jet maxima). The uncertainty of the RMS differences is

estimated from themean standard error, and differences

of two standard errors are significant at the 95% confi-

dence level. It is also noted that the double-difference

series have been corrected with the lag-1 autocorrela-

tion. More details about the uncertainty, lag-1 autocor-

relation, and statistical significance can be found in

Benjamin et al. (2010).

METAR surface observations [;2000 hourly reports

in the continental United States (CONUS) domain] and

NCEP Stage IV multisensor precipitation data (Lin and

Mitchell 2005) are also used for verification of the RAP

forecasts. For surface verification, the error percent re-

duction using Eq. (1) and bias comparison for 3-, 6-, 9-,

and 12-h forecasts are calculated. For precipitation

verification, 24-h accumulated precipitation forecast

performance is evaluated using the critical success index

(CSI; Schaefer 1990) scores and precipitation bias.

In addition, using CRTM, simulated satellite bright-

ness temperature observations forAMSU-AonNOAA-

18 and MHS on NOAA-19 are computed from forecast

fields and then compared to real observations. To avoid

errors between measurements and simulations brought

about from large differences between time of observa-

tion and model valid time, a maximum time discrepancy

of 30min is allowed between the forecast fields and the

observations. Biases computed for different forecast

hours (3–12 h) are used to assess the forecast improve-

ment due to the assimilation of AIRS radiances.

3. AIRS channel selection for RAP and bias
correction

a. AIRS channel selection for RAP

NOAA’s National Environment Satellite, Data, and

Information Service (NESDIS) distributes a reduced set

(281-channel subset) of AIRS channels, selected by the

AIRS science team (Susskind et al. 2003), to NWP

centers for use in operational weather prediction in

near–real time (NRT) (Goldberg et al. 2003). Because

the RAP system has a relatively low model top of

10 hPa, satellite channels with a peak weighting function

(PWF) that are near or above this level are not assimi-

lated. A subset of 68 AIRS channels (from the NCEP

GDAS 120-channel set) has been selected for use in

the RAP assimilation based on an adjoint sensitivity

TABLE 1. Types of data used in the CNTL experiment.

Observation Platform

Upper air Conventional Sonde

Profiler

Aircraft

Land surface METAR

Mesonet

Marine surface Ship

Buoy

Radar VAD wind

Satellite

Satellite winds [atmospheric

motion vector (AMV)]

GOES

Precipitable water GPS

Microwave radiances AMSU-A

MHS

Infrared radiances HIRS-4
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analysis that was completed as part of this study and

followed the method of McCarty et al. (2009). Based on

this analysis, channels determined to have a significant

contribution from levels above the RAPmodel top were

removed. Specifically, first of all, the brightness tem-

perature sensitivity for each channel was calculated

through multiplying the temperature Jacobian (calculated

fromCRTM through amidlatitude clear-sky profile) and a

FIG. 2. Temperature Jacobian calculated from CRTM using

a standard midlatitude clear-sky profile for (a) the NESDIS 281-

channel set, (b) the GDAS 120-channel set, and (c) a set of 68

selected RAP channels.

FIG. 3. An illustration of the AIRS spectrum (plus symbols; BT simulated from CRTMusing

a standard midlatitude clear-sky profile) and 68 selected channels (colors) for RAP, with blue

indicating the selected CO2 longwave channels (15mm), green indicating the surface channels,

red indicating the water vapor channels, and magenta indicating the CO2 shortwave channels

(4mm). The bottom row of black plus (1) symbols indicates the 281 operational selected

channels delivered to NCEP. The middle row of black plus symbols indicate 120 selected

channels for the NCEP operational GDAS model. The top row of black plus symbols indicate

the selected 68 channels for RAP.
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finite perturbation (1% for temperature). Then, the to-

tal contribution from above the top of the model

(10 hPa) to the top of the atmosphere (0.01 hPa) was

calculated as the sum of the brightness temperature

sensitivity from the levels above themodel top to the top

of the atmosphere. If the value of the total contribution

from the model top to the top of the atmosphere ex-

ceeded 0.06K, then this channel was discarded. More

details of this channel selection method may be found in

McCarty et al. (2009). Figure 2 shows the temperature

Jacobian of the 281 NESDIS NRT channel set, 120

GDAS channel set, and the newly selected RAP 68-

channel set. It is apparent from Figs. 2b and 2c that the

channels with peak values of the temperature Jacobian

between around 10 and 100 hPa were removed. The

remaining 68 channels were considered appropriate for

assimilation into RAP with its 10-hPa model top.

Figure 3 shows an example of the AIRS spectrum with

the selected AIRS channels for RAP use. Blue dots

represent the 15-mm longwave carbon dioxide channels,

green dots represent surface channels, red dots repre-

sent water vapor channels, and magenta dots represent

TABLE 2. List of AMSU-A,MHS, andHIRS-4 channels used in the

retrospective runs.

Satellite Sensor Channels assimilated

NOAA-15 AMSU-A 1–10 and 15

NOAA-18 AMSU-A 1–8, 10, and 15

MHS 1–5

NOAA-19 AMSU-A 1–7, 9–10, and 15

MetOp-A AMSU-A 1–6, 8–10, and 15

MHS 1–5

HIRS-4 4–8 and 10–15

FIG. 4. Histogram of O-B values before (blue) and after BC for (a) AIRS channel 252 (longwave carbon dioxide

channel with PWF height around 628 hPa), (b) AIRS channel 787 (surface channel), (c) AIRS channel 1382 (water

vapor channel with PWF height around 840 hPa), and (d) AIRS channel 1881 (shortwave carbon dioxide channel

with PWF height at around 695 hPa) from the AIRS experiment. Statistics are obtained from the 1-month ex-

periments. The dashed blue line indicates the mean value for the blue line and the dashed red line indicates the

mean value for the red line. The thick-dashed black line is the zero line.
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the 4.3-mm shortwave carbon dioxide channels. The

wavenumber of the 281 NRT channels, the 120 GDAS

channels, and the 68 channels selected for this study are

indicated by the black plus symbols in the lower portion

of Fig. 3. Impact studies (not shown) using 9-day retro-

spective experiments showed slight improvements in

upper-level (above 200 hPa) temperature forecasts and

middle-level (800–600 hPa) moisture forecasts using

this newly selected 68-channel set compared to assimi-

lation without this channel selection (i.e., the GDAS

120-channel set). This led to the use of this newly se-

lected channel set in this study. Channel selection for

other radiance data (AMSU-A, MHS, and HIRS-4) has

also been performed for RAP, leading to the removal of

the high-level and ozone channels. The channels

(excluding AIRS data) assimilated in this study are lis-

ted in Table 2. More details about the channel selection

procedures for AMSU-A, MHS, and HIRS-4 in RAP

can be found in Lin et al. (2017).

It is noted that the assimilated AIRS radiance data

passed the quality control and cloud detection procedures

in GSI to remove the cloud-contaminated data. Over

land and water, GSI uses three different threshold tests

from the differences of shortwave and longwave ther-

mal channels to identify clouds (Goldberg et al. 2003).

For water surfaces, GSI uses the difference between

model SST and AIRS window channel estimated SST

for the initial clear test (Goldberg et al. 2003; Le

Marshall et al. 2006). Then, a low-cloud/cirrus check is

performed using the difference between 3.4- and 11-mm

FIG. 5. BT difference (O-B) between the observed and background simulated at 1800 UTC 15 May 2010 for

(a) before and (b) after BC for AIRS channel 252 (longwave carbon dioxide channel with PWF height around

628 hPa) and for (c) before and (d) after BC for AIRS channel 1382 (water vapor channel with PWF height around

840 hPa).
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channels (LeMarshall et al. 2006). In addition, a channel-

dependent cloud check is performed based on the

contribution from transmittance below the cloud-top

level. If the transmittance of a channel from the cloud

layer is more than 2%, then this channel is rejected.

Data surviving these stringent procedures were as-

sumed to be unaffected by clouds and therefore are

eligible for assimilation.

b. Bias correction

Calibration-based biases in satellite radiances, if not

corrected, are sources of error in an NWP assimilation

system. These biases can vary with time, geographical

location, air mass, and scan angle (Auligné et al. 2007).

Within GSI, this is accomplished with a variant of the

variational bias correction scheme described by Derber

and Wu (1998), Dee (2005), and Zhu et al. (2014). For

theGSI version used in this study, the bias correction is a

two-step procedure. A dynamically updated airmass

component modeled through predictors is included in

the variational scheme. The coefficients of the air mass

are updated during each assimilation. The scan-angle

component is updated outside of theGSI and performed

after running GSI.

Optimizing radiance bias correction in rapidly upda-

ted regional models is challenging as a result of the

limited extent of the domain and nonuniform data

coverage in space and time, as well as the relatively low

model top in RAP. The number of observations is highly

variable from cycle to cycle and because of the timing of

polar orbiter satellite passes relative to the limited do-

main, this sparse and highly variable data coverage

adversely affects the variational BC procedures. BC

procedures require a large observation sample size, as

coefficients of predictors used to describe the biases are

regressed against observations (Auligné et al. 2007). In

addition, the relatively low model top can result in an

insufficient description of the atmospheric structure,

especially in upper levels, resulting in unrealistic ob-

servation innovations. One method of ameliorating this

is to exclude observations with large innovations as part

of the quality control (QC), but this further reduces the

number of assimilated observations and can cause a

negative feedback to the next cycle, leading to a deg-

radation of the cycled analysis (Auligné and McNally

2007). To provide a realistic spinup of the bias correction

predictor coefficients (i.e., mimicking a real-time oper-

ational system) for these retrospective satellite assimi-

lation impact tests, an extensive retrospective spinup

run was completed to obtain more statistically reliable

bias correction bias coefficients for the predictors for all

radiance data used. The airmass and scan-angle bias

coefficient files used to initialize the bias correction

spinup were obtained from the GDAS during July 2012.

A preliminary 9-day (8–16 May 2010) retrospective run

using multiple applications (W.-S. Wu 2011, personal

FIG. 6. Mean O-B (BT) values before [asterisks (*)] and after (filled circles) BC for the 68

channels used over the 1-month AIRS experiment period. The 68 AIRS channels are arranged

vertically by PWF height with blue indicating longwave carbon dioxide channels, green in-

dicating surface channels, red indicating water vapor channels, and magenta indicating short-

wave carbon dioxide channels.
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communication) of the GSI per cycle was performed to

spin up the bias coefficients. The benefit of this spinup

effort was seen in a 9-day AIRS retrospective test

completed as part of this study. When the spunup bias

coefficients were used, forecast skill improved and more

observations were assimilated compared to the case

when bias coefficients were not spun up. In this spinup

procedure, at each analysis time, updates of both the

scan-angle bias coefficients and airmass bias coefficients

are repeated for 30 GSI iterations (i.e., for each itera-

tion, airmass bias coefficients are dynamically updated

by running GSI, followed by updating the scan-angle

bias coefficients outside of the GSI). The coefficients

resulting from this 30-iteration procedure become the

starting coefficients for the next analysis time. The up-

dated airmass and scan-angle bias coefficient files after

the 9-day spinup are used as the initial bias coefficient

files for both the CNTL and EXP runs. It is noted that

FIG. 7. (a)MeanO-B (K; shown by *) andO-A (filled circles) and (b)O-B standard deviation

errors (*) and O-A standard deviation errors (filled circles) averaged over the 1-month AIRS

experiment. The channels are arranged vertically by PWF height, with blue indicating long-

wave carbon dioxide channels, green indicating surface channels, red indicating water vapor

channels, and magenta indicating shortwave carbon dioxide channels.
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the two-step bias correction procedure used in this paper

follows the version used in the older versions of RAP

(RAPv1 and RAPv2). RAPv3 (operationally im-

plemented on August 2016) is using the new enhanced

variational bias correction scheme developed at NCEP

and described by Zhu et al. (2014). The readers are re-

ferred to Lin et al. (2017) for more details of the appli-

cation of the enhanced bias correction scheme

in RAPv3.

Bias performance is evaluated by examining histo-

grams of the observation innovations (O-B). We eval-

uate the effectiveness of the bias correction by

examining the mean of the innovation distribution be-

fore and after the bias correction. Ideally, the mean

should be very close to zero after the bias correction,

indicating that the bias correction is working well. For

several representative AIRS channels, Fig. 4 shows the

histograms of the brightness temperature (BT) O-B

values before (blue) and after (red) application of BC.

After BC, the mean values of O-B are closer to zero for

these channels compared with the mean O-B values

before BC. This demonstrates that the BC procedure is

functioning properly. Then, we further to look at ex-

amples of the spatial patterns of the bias correction.

Figure 5 shows the O-B bias with and without bias cor-

rection for AIRS channel 252 (temperature channel)

and 1382 (water vapor channel). It can be seen that after

bias correction, most large O-B residuals (mainly cold

bias) are reduced. Figure 6 shows the mean BT O-B

values averaged over a 1-month period before and after

the BC for all of the 68 AIRS channels used, arranged

according to their PWF height. ThemeanO-B values for

all channels used are also very close to zero after BC,

further indicating that the BC is functioning correctly.

FIG. 8. Difference in RMS errors (vs radiosonde) between the AIRS experiment and the

control run for (a) temperature (K) and (b) moisture (%) for different vertical layers (1000–

800 hPa, blue; 800–400 hPa, yellow; 400–100 hPa, green; 1000–100 hPa, red) computed against

available radiosonde observations over North America over a 1-month period. The error bar

indicates the 62 standard error from the mean impact, representing the 95% confidence

threshold for significance.
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Longwave carbon dioxide channels (blue) have the

largest cold bias (24K) before BC for those channels

that peaked between 700 and 900 hPa. It is noted that the

largest 24-K bias came from two ozone contamination

channels (channels 256 and 257). These two channels

have weak ozone-absorbing lines and the WRF-ARW

does not have ozone information, which resulted in the

large O-B biases. Based on these results, we are going to

remove these two channels from our future RAP im-

plementation. Thewater vapor channels peaking (around

400hPa) have the largest warm biases, greater than 1K

before application of BC.

4. Experiment results

a. Analysis statistics

Before examining the forecast impact from the as-

similation of the bias-corrected AIRS data, we first

evaluate analysis statistics by comparing the O-B and

analysis errors [observationO2 analysisA (O-A)] after

bias correction. When the average of the analysis errors

(O-A) after BC is close to zero, we can say that the

analysis results fit the radiance observations well and the

standard deviation of the O-A should certainly be less

than the standard deviation of the O-B. Figure 7 shows

the mean and standard deviation of O-B (star symbols)

and O-A (filled cycles) after BC for all AIRS channels

assimilated, arranged according to the height of their

PWF. Note that the star symbols in Fig. 7a correspond to

the filled circles in Fig. 6 (the range of values in the

abscissa is much smaller in Fig. 7a). As can be seen in

Fig. 7, the mean biases and standard deviations of the

O-A values for different channels are notably smaller

than the corresponding values for the O-B values. In

Fig. 7a, most O-A bias values (filled circles) are within

the range of 60.05K, while O-B values are as large as

0.25K for water vapor channels (red stars), indicating

these observations were drier than the first guess even

after the bias correction. TheO-A biases were negative

for most of the 15-mm longwave carbon dioxide chan-

nels (blue), indicating that the observations were

cooler than the analysis. TheO-A biases for most water

vapor channels were negative, indicating that the

FIG. 9. As in Fig. 8, but for the normalized impact (%).
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observations were moister than the analyses. Figure 7b

shows that after assimilation the O-A standard de-

viation is significantly reduced relative to the O-B

standard deviations, indicating the closer fit to the

observations for the analysis compared to the back-

ground. The 4.3-mm shortwave carbon dioxide chan-

nels (magenta filled) have the smallest O-A standard

deviations (around 0.2–0.3K), followed by the 15-mm

shortwave carbon dioxide channels (blue filled) at

around 0.4–0.5K. Most of the surface channels have

standard deviation values around 0.4–0.6K. The water

vapor channels have the largest O-A standard de-

viations, ranging between 0.3 and 1.1K, with larger

standard deviation for stronger absorption channels.

The O-A standard deviation values calculated in this

study are similar to those in Lim et al. (2014).

b. Forecast verification

We examined the short-term (up to 12h) forecast

impact from the assimilation of the AIRS data by

FIG. 10. Temperature bias (K) valid at (a) 0000 and (b) 1200 UTC for radiosonde verification for CNTL (no

AIRS; blue) and EXP (AIRS; red) at different forecast hours for different vertical layers with the error bar in-

dicated (61.96 standard error).
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verifying forecasts against radiosonde measurements,

METAR surface data, NCEP Stage IV precipitation, and

satellite radiance observations. The verification procedures

have already been presented in section 2c, and the results

presented represent the average scores from a month-long

3-hourly cycled retrospective study with a 12-h forecast

every 3h (245 forecasts).

Figures 8 and 9 show the 3-, 6-, 9-, and 12-h forecast

actual and normalized impacts (%) for temperature and

relative humidity RMS errors (verified against radio-

sonde observations) for different atmospheric layers.

Assimilation of clear-sky AIRS radiance data has an

overall small positive impact for most layers and fore-

cast hours for temperature and relative humidity.

For the normalized temperature impact (Fig. 9a), the

biggest positive impact (0.9%) was observed for the

800–400-hPa layer at the 3-h forecast. Overall, small but

statistically significant (at the 95% level) positive

FIG. 11. As in Fig. 10, but for relative humidity (%).
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impacts were seen for temperature for nearly all layers

and forecast lengths, with the only exception being

short-range forecasts at the upper levels. Slight degra-

dation was noted for temperature at the 3- and 6-h

forecasts for the 400–100-hPa layer but these results

were not statistically significant. For moisture (Fig. 9b),

a consistent (with forecast lead time), statistically sig-

nificant positive impact was noted for the 800–400-hPa

layer. The 1000–800-hPa layer showed a slightly nega-

tive forecast impact (but not statistically significant) for

the 3- and 6-h forecasts. A possible explanation for this

might be bias introduced by the near-surface water va-

por channels.

Figures 10a and 10b show the temperature bias veri-

fication (also against radiosonde observations) for dif-

ferent atmospheric layers from 3- to 12-h forecasts valid

at 0000 and 1200 UTC, respectively. There is a very

slight improvement in temperature bias for all layers at

most forecast hours. Figure 11 shows a similar plot to

Fig. 10 but for relative humidity bias. Similar to in-

creased low-level relative humidity RMS errors for the

AIRS assimilation experiment (Figs. 8b and 9b), the

larger relative humidity bias for the 1000–800-hPa layer

in the AIRS experiment may be due to bias introduced

from the near-surface water vapor channels. For the

800–400-hPa and 1000–400-hPa layer relative humidity,

the forecast biases with the assimilation of AIRS data

(red) are improved compared with the control run (blue).

It is also noted that the temperature and relative humidity

biases for forecasts valid at 0000 UTC are larger than

those for forecasts valid at 1200 UTC, especially for the

1000–800-hPa layer. This is likely due to the warm tem-

perature bias at 0000 UTC in RAPv2 (see B16).

Figure 12 shows the 3-, 6-, 9-, and 12-h forecast nor-

malized impact (%) for 2-m temperature (Fig. 12a) and

2-m dewpoint (Fig. 12b) against METAR surface

FIG. 12. Normalized impact (%) fromEXP (withAIRS) for (a) 2-m temperature and (b) 2-m

dewpoint for different forecast hours against near-surface data from METARs over the

CONUS domain. The error bar indicates the 62 standard error from the mean impact, rep-

resenting the 95% confidence threshold for significance.

OCTOBER 2017 L I N ET AL . 1795



observations. AIRS data have a small positive impact on

surface temperature and dewpoint verification for all

forecast hours with statistically significant (at the 95%

level) impacts for 6, 9, and 12h. The surface temperature

and dewpoint biases are also reduced for all forecast

hours (Fig. 13).

The CSI, a categorical verification skill measure, is

used to evaluate differences in precipitation forecast

skill between the different experiments. CSI scores for

24-h accumulated precipitation for the eastern and

westernUnitedStates andbiases (forecast area/observation

area) are illustrated in Fig. 14. The 24-h accumulated pre-

cipitation from the model (on its 13-km grid) is calculated

using the 3-h forecasts from eight successive cycles

spanning a 1200–1200 UTC period each day. This 8 3 3h

verification procedure was chosen because of the 3-h

cycle beingused in this experiment; theRAPsoil conditions

evolve continuously based on the 0–3-h atmospheric

forecasts (precipitation, temperature, etc.) as described

in B16 (their section 2 and Table 3). From Fig. 14, it is

apparent that the model tends to produce areas of light

precipitation that are too widespread, as well as in-

sufficient heavy precipitation. The assimilation of the

AIRS radiances yields a slightly positive impact on

forecast skill as measured by CSI for the heavier

amounts and a negligible impact otherwise.

Last, comparisons are made between model–forecast

brightness temperatures generated using CRTM and

observed satellite radiance brightness temperatures

with no bias correction. Figure 15 shows themean bias

of O-F with no bias correction for different NOAA-18

AMSU-A channels at different forecast hours averaged

over the 1-month period (note that the ordinate range

varies significantly for the different channels). Mean

forecast biases were reduced for all channels except

near-surface channels 3, 10, and 15. Simulated brightness

temperature using the forecast fields was also compared

with observations from AMSU-A on NOAA-19 and

similar results were obtained. Figure 16 shows the

mean bias of O-F with no bias correction for different

FIG. 13. Bias of (a) 2-m temperature and (b) 2-m dewpoint for METARs surface verification

for CNTL (no AIRS; blue) and EXP (AIRS; red) at different forecast hours. The error bar

indicates the62 standard errors from the mean bias (errors), representing the 95% confidence

threshold for significance.
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NOAA-19 MHS channels at different forecast hours

averaged over the 1-month period. It is noted that mean

forecast biases were reduced for channels 1 and 2, but

were large, especially for channel 4 (with PWF height

around 454hPa). The reason may be due to the large

bias from the assimilated midlevel (around 600 hPa)

AIRS water vapor channels (the red color symbols in

Fig. 7).

5. Summary

A subset of clear-sky AIRS radiance data was as-

similated into a research version of the NOAA Rapid

Refresh model system to assess their impact on short-

range forecasts during a 1-month retrospective period

(1–31 May 2010). The control run included all real-

time conventional data and the radiance data from

AMSU-A,MHS, andHIRS-4. TheAIRS experimental

run included all data in the control run plus the AIRS

radiance data. To assess the best potential data impact

(subject to other limitations in this study), as well as

to improve the effectiveness of the radiance bias

correction procedure, all radiance data used in this

study were in full coverage (i.e., assumed no data la-

tency and data cutoff issues). Before running the ret-

rospective runs, channel selection and radiance bias

correction spinup were performed to improve the ef-

fectiveness of the radiance data assimilation in the

regional RAP model. Based on an adjoint sensitivity

study, a total of 68 AIRS channels were selected from

the GDAS channel set for RAP to accommodate its

low model top. A 9-day bias correction spinup retro-

spective run with 30 GSI runs in each cycle was con-

ducted using conventional data and all radiance data

to fully spin up the airmass and scan-angle bias co-

efficients. The updated bias coefficients from the

spinup run were used as the starting bias coefficients

for both the control and the AIRS experiment runs.

Performance of the bias correction was assessed by

looking at observation innovations before and after BC.

Results indicated that the mean of the observation in-

novations for all channels used are close to zero after BC

and the histograms of the observation innovations

exhibited approximate Gaussian distributions. The

FIG. 14. (a),(b) CSI and (c),(d) bias for 24-h accumulated precipitation (8 3 3 h totals). Values for the western

United States (west of 1008W) are shown in (a) and (c) and for the eastern United States (east of 1008W) are shown

in (b) and (d). Statistics are computed against NCEP Stage IV precipitation over the 1-month period.
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AIRS observations were warmer and drier than the

RAP background prior to the BC. The standard de-

viation of O-A was reduced compared to the standard

deviation of the O-B for all channels, indicating the

impact of the AIRS observations on the analysis. The

AIRS 4.3-mm shortwave carbon dioxide channels had

the smallest O-A standard deviations while the water

vapor channels had the largest standard deviations, es-

pecially for high-peaking channels.

Short-range (3–12h) forecast verification against ra-

diosonde observations showed a statistically significant

positive impact at the 95% confidence threshold from

the assimilation of AIRS data. For deep atmospheric

layers (1000–100 hPa for temperature and 1000–400hPa

for relative humidity), positive normalized impact (with

the largest impact nearly 0.3% and 0.6% respectively) is

achieved for temperature and moisture for all forecast

hours. METAR surface data verification shows a small

positive normalized impact (less than 0.5%) for 2-m

temperature and 2-m dewpoint at all forecast hours.

Surface temperature and dewpoint biases were reduced

for the AIRS experiment compared with the control

run. A slightly positive impact was found for higher

threshold precipitation verification against the NCEP

Stage IV precipitation data. Comparison of the control

run and AIRS assimilation run against AMSU-A data

indicated a small bias improvement from the AIRS as-

similation for most AMSU-A comparison channels.

Exceptions were noted for several surface and upper-

level channels when comparing the simulated brightness

temperature (from forecast fields) to the observed

AMSU-A satellite measurements.

As described in section 1, the results from this study

represent upper limits (subject to other limitations in

this study) on the forecast improvements to be expected

when using AIRS data within RAP because full-

coverage data were used. The 1-month length of the

retrospective study, the use of a full suite of other ob-

servations, and the completion of the tests using a close

to operational version of RAP all lend credibility to the

robustness of the results reported.

This paper also includes a description of the application

of the original NCEP cycled variational bias correction

scheme (Derber and Wu 1998; Dee 2005) to the RAP

hourly updated model. Application of this bias correction

to RAP is very similar to the application of the enhanced

FIG. 15. Bias between observed and simulated BT (AIRS, red; no AIRS, blue) for selected channels on NOAA-

18AMSU-A at different forecast hours with the error bar indicated (61.96 standard error). Statistics are obtained

from the 1-month period (May 2010).
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NCEP bias correction (Zhu et al. 2014) that was im-

plemented with RAPv3 in August 2016, and this work

provided a basis for the RAP-specific bias correction pro-

cedures applied to other satellite radiance data nowused in

the NCEP operational RAPv3. The paper also describes

initial results for channel selection and assimilation of hy-

perspectral radiance data into RAP, and this work

provided a basis for RAP-specific channel selection pro-

cedures applied to other satellite radiance data used in the

NCEP operational RAPv3. The AIRS radiance assimila-

tion described here sets the stage for an overall radiance

assimilation impact study within RAPv3 (Lin et al. 2017).

This study has demonstrated that assimilation of

AIRS data into theRAPmodel system yields a small but

statistically significant positive impact on short-range

(3–12h) forecasts. Based on these results, assimilation of

AIRS radiance data into the NOAA-operational RAP

can potentially further improve operational RAP fore-

casts if data latency and data cutoff issues for real-time

implementation can be addressed. As a result of the data

latency and short cutoff time, the real-time hourly AIRS

data coverage for RAP was quite limited, and AIRS

data were not included in RAPv3. But recent modifi-

cations to the experimental RAP configuration allow

for a delay in the starting time for many of the partial

cycles (0300–0700 and 1500–2000 UTC), thereby in-

creasing the amount of AIRS data available in real time.

Based on these positive results from this paper and this

configuration change, AIRS data assimilation is planned

for RAPv4 along with other new radiance datasets [e.g.,

IASI, Cross-track Infrared Sounder (CrIS), and Ad-

vanced Technology Microwave Sounder (ATMS)].
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